Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor.

نویسندگان

  • P G Mermelstein
  • J B Becker
  • D J Surmeier
چکیده

Until recently, steroid hormones were believed to act only on cells containing intracellular receptors. However, recent evidence suggests that steroids have specific and rapid effects at the cellular membrane. Using whole-cell patch-clamp techniques, 17 beta-estradiol was found to reduce Ba2+ entry reversibly via Ca2+ channels in acutely dissociated and cultured neostriatal neurons. The effects were sex-specific, i.e., the reduction of Ba2+ currents was greater in neurons taken from female rats. 17 beta-Estradiol primarily targeted L-type currents, and their inhibition was detected reliably within seconds of administration. The maximum reduction by 17 beta-estradiol occurred at picomolar concentrations. 17 beta-Estradiol conjugated to bovine serum albumin also reduced Ba2+ currents, suggesting that the effect occurs at the membrane surface. Dialysis with GTP gamma S prevented reversal of the modulation, suggesting that 17 beta-estradiol acts via G-protein activation. 17 alpha-Estradiol also reduced Ba2+ currents but was significantly less effective than 17 beta-estradiol. Estriol and 4-hydroxyestradiol were found to reduce Ba2+ currents with similar efficacy to 17 beta-estradiol, whereas estrone and 2-methoxyestriol were less effective. Tamoxifen also reduced Ba2+ currents but did not occlude the effect of 17 beta-estradiol. These results suggest that at physiological concentrations, 17 beta-estradiol can have immediate actions on neostriatal neurons via nongenomic signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances.

The present experiments were designed to examine dopamine (DA) modulation of whole cell currents mediated by activation of N-methyl-D-aspartate (NMDA) receptors in visualized neostriatal neurons in slices. First, we assessed the ability of DA, D1 and D2 receptor agonists to modulate membrane currents induced by activation of NMDA receptors. The results of these experiments demonstrated that DA ...

متن کامل

Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons

In rat neostriatal neurons, D1 dopamine receptors regulate the activity of cyclic AMP-dependent protein kinase (PKA) and protein phosphatase 1 (PP1). The influence of these signaling elements on high voltage-activated (HVA) calcium currents was studied using whole-cell voltage-clamp techniques. The application of D1 agonists or cyclic AMP analogs reversibly reduced N- and P-type Ca2+ currents. ...

متن کامل

D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade.

Dopamine is a critical determinant of neostriatal function, but its impact on intrastriatal GABAergic signaling is poorly understood. The role of D(1) dopamine receptors in the regulation of postsynaptic GABA(A) receptors was characterized using whole cell voltage-clamp recordings in acutely isolated, rat neostriatal medium spiny neurons. Exogenous application of GABA evoked a rapidly desensiti...

متن کامل

Channel Current and Its Dopaminergic D2 Modulation in Developing Neostriatal Neurons

Salgado, Humberto, Fatuel Tecuapetla, Tamara Perez-Rosello, Azucena Perez-Burgos, Enrique Perez-Garci, Elvira Galarraga, and Jose Bargas. A reconfiguration of CaV2 Ca 2 channels current and its dopaminergic D2 modulation in developing neostriatal neurons. J Neurophysiol 94: 3771–3787, 2005. First published August 24, 2005; doi:10.1152/jn.00455.2005. The modulatory effect of D2 dopamine receptor...

متن کامل

Properties of Q-type calcium channels in neostriatal and cortical neurons are correlated with beta subunit expression.

In brain neurons, P- and Q-type Ca(2+) channels both appear to include a class A alpha1 subunit. In spite of this similarity, these channels differ pharmacologically and biophysically, particularly in inactivation kinetics. The molecular basis for this difference is unclear. In heterologous systems, alternative splicing and ancillary beta subunits have been shown to alter biophysical properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 1996